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Eigenvector-eigenvalue rate calculations for the fluctuating barrier problem: Two examples
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By means of the corresponding Fokker-Planck equation two simple systems with fluctuating barriers are
studied: the piecewise linear and the piecewise constant model. In the Smoluchowski limit and for dichoto-
mous barrier fluctuations we derive explicit expressions for equilibrium and relaxation eigenvectors and de-
termine the least negative eigenvalue, the relaxation rate, for all values of the barrier fluctuation rate. In
particular, the accuracy of an approximate method for solving the eigenvector-eigenvalue problem is demon-
strated [S1063-651X98)08711-X

PACS numbe(s): 05.40+j, 02.50—r, 82.20.Mj

[. INTRODUCTION bistable potentials: double wells with either very large
(piecewise linegror almost vanishingpiecewise constant

Escape over a high potential barrier by thermal activatiorcurvatures at the barrier top and at the well minima. They not
can be found almost everywhere in physics, chemistry, an@nly allow for exact results as explicitly shown for the mean
biology [1]. Particles starting in a well to one side of the exit time in[7,8] but also lead to transparent expressions that
barrier stochastically jump over it to reach a well on thedemonstrate nicely the general strategy of the approximation.
other side; at long times the initial nonequilibrium state de- The article begins with a brief review of the Fokker-
cays with a constant rate, the so-called relaxation rate, to enfdlanck approach for dichotomous barrier fluctuations in the
up in thermal equi”brium_ This dynamics is governed by aSm0|UChOWSki |Imlt(SeC ID In the fO”OWing two SeCtiOI’]S
Fokker-Planck equation which becomes particularly simpldirst the piecewise lineaSec. Il)), then the piecewise con-
in the overdamped Smoluchowski lini2]. Then, the eigen- Stant caséSec. |V) are analyzed. Analytical results are illus-
vector to the Smoluchowski operator with vanishing eigen-{rated by numerical examples. Finally, in S&ta summary
value, the equilibrium state, can be given explicitly; also thelS given.
relaxation eigenvector with its least negative eigenvalue, the

relaxation rate, is found immediately. _ _ Il. EOKKER-PLANCK OPERATOR
In recent years thermal escape over fluctuating barriers
has attracted extensive attentif®4], especially since the In a static potential/(x) thermal diffusion of a particle in

discovery of the “resonant activation” phenomenon in 1992the overdampedSmoluchowski limit is determined by

[5]. In many complex systems an additional stochastic pro-

cess, not in thermal equilibrium, controls thermal diffusion _ / &

and, thus, acts like a “g?ate” for, e.g., a reaction to oddir Kp =0 V' (X)+ edilp=Sp, @

In the Smoluchowski limit the mean exit time was calculated

analytically for simple models and dichotomous barrier fluc-WhereV’ stands fordV(x)/dx, e=kgT denotes the thermal

tuations[7,8] and numerically for more realistic potentials €N€rgy, anch(x,t) is the position probability of the particle

and continuous fluctuatior{g}]. However, the conventional at timet. The mathematics to study this dynamics is rather

Fokker-Planck approach had only been studied in certaisimple: one transforms the Smoluchowski operefoto a

limits [9]. The nice simplifications that make the theory of self-adjoint second-order differential operator by employing

self-adjoint operators applicable to the Smoluchowski operaan appropriate multiplication operator. Accordingly, the ex-

tor for static barriers are no longer possible in the fluctuatingstence of a complete set of eigenfunctions with correspond-

barrier case. Hence, even the existence of equilibrium anthg real eigenvalues is assured. In particular, the equilibrium

relaxation eigenfunctions is not obvious and a consistent apgigenfunctionépozo is easily found and the least negative

proximate method for calculating the relaxation rate needs tejgenvalue—k gives the relaxation rate.

be found. In the case of dichotomous barrier fluctuations between
Recently a rigorous proof was given for the case of di-potential surface¥/; andV, with flipping ratey two densi-

chotomous barrier fluctuations that guarantees at least thfas p,(x,t) andp,(x,t) are neededp;(x,t), i=1,2 are the

existence of these relevant eigenfunctioh8]. Foundations densities to find the particle at tinteat positionx and the

for a practical approach to gain explicit solutions, especiallypotential in state/;. The analog to Eq(1) reads
for the relaxation rate, for all values of the barrier fluctuation

rate were laid in a subsequent wdtkl]. Here, we combine

results from both studies to illustrate the approximate at(pl) :f_(y)(pl),
eigenvector-eigenvalue calculation for two simple models: P2
the piecewise linear and the piecewise constant potential.

These two potentials can be seen as limiting cases of genenigith the matrix Smoluchowski operator

P2 @
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However, no simple trick is known to transforimto a self-
adjoint operator. Consequently, even the existence of equi- v, -
librium and relaxation eigenfunctions is not obvious. One AN

way is then to diagonalizé exactly which, however, is ex-
plicitly possible only for a few model potentialsee Sec.
IV). The other way is to prove the existence at least of equi- P AN
librium and relaxation eigenfunctions for certain classes of 4

)
‘/1 4

T
>

6969

potentials without resorting to the well-developed theory of T

self-adjoint operators. This is what was dond 19)].

Let us sketch the idea for the equilibriuﬁva=(p1,p2) in
symmetric potentialsV, (x) restricted to the range
[ —R,R] by reflecting boundary conditiong’ p; + ep; =0 at
x==*R. We write p;(X)=c;(x)exd —Vi(X)/e] and impose
¢/ (0)=0, c;(x)>0 for all x, andc{(*xR)=0,=1,2. Inte-
gratingLpo=0 one gets

ci0ex ~Va(/el = (1) [ ax Tpa(x) — ot )],
@
C00eH ~ V01l =~ (41e) | A Tpa(x)— o))

If ¢1(0)/c,(0) is sufficiently large, thep,> p, for all x and
c1(R)>0, c3(R)<0. If c4(0)/cy(0) is sufficiently small,
thenp,<p, for all x andc;(R)<0, c;(R)>0. By continu-
ity, there is a ratiac1(0)/c,(0) “just right” that the integral
from O to R of p;—p, vanishes, s&;(R)=c;(R)=0 and

Lo
FIG. 1. Piecewise linear potentials.
A. Equilibrium eigenvector

Due to symmetryp,(X) = po( —X), it is sufficient to con-

siderx>0 only. One rewrited p,=0 as a set of first-order
differential equation$11]

oJ-le Al
Po Po
(? e ’ = - ;| (6)
X( Po ) (B A\ po
wherel denotes the two-dimensional identity and
vile 0 vy 1 -1
A_( 0 vzle)' B_;(—l 1 @

By determining eigenvectors and eigenvalues of the four by
four matrix in Eq.(6) one generates a basis set for expanding

50. The proper expansion coefficients are then fixed by in-

we have the equilibrium solution. Similar arguments showvoking the boundary conditions.

that a relaxation eigenfunctioﬁﬁ,=—kl3r, with p,(x)=
—p(—X), exists.

The eigenvectors are obtained as=(W;,\;W;),]j
=1,...,4where eigenvalues; and componentsK/j follow

In general, much more work is necessary to gain explicifrom
expressions for the quantities of interest due to the entangle-

ment of the potential surfaces in E(). From a physical
point of view the limit of small thermal noise, i.e., high
barriers, with the characteristic separation of time scales i

Bw-+NAW=\2w. (8)

fn particular, one finds one vanishing eigenvalye=0 cor-

relevant for rate calculations. Then, equilibrium and relax-responding to the equilibrium of the process. The remain-

ation eigenfunctions are dominated by “Arrhenius-like” ex-
ponentiald 11] which allows for an asymptotic solution i
In the following we illustrate how this latter fact together

with the above results from the existence proof can be com-

bined to give a powerful method for practical calculations.

Ill. PIECEWISE LINEAR POTENTIAL

We study diffusion in fluctuating piecewise linear poten-
tials
x<|

Ui(l—X), (VS

Vi(X): Ui(l +X),

©)

—I=x=<0

with i=1,2 andv;>v,>0 (cf. Fig. 1). While in principle
for this model the Smoluchowski operat@®) can be diago-
nalized exactly, we concentrate here ofi/e>1,i=1,2
(high barrierg to show the strategy of the approximation.

ing three real eigenvalues are determined by the cubic equa-
tion

v vwa—2€ 290
IS C Akt At A} 9
€ € €
with the average slope
— l)1+02
== (10
For the components one has
- (1 - (X - (1 - (1
W= —xy)" Wo=| 17 Wa=| ), Wy X4’
(17)
where
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FIG. 2. Eigenvalues of Eq8) as functions ofy/e. The compo-

nents of the corresponding eigenvectors are also specifieg for

=0 andy/e— . See text for details.

€N1—Uq eN,— Uy

X1= y Xo= , Xq=
L 6)\1_U2 2 Ul_E)\Z 4

Since A and B are constant matrices E¢P) is easy to
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constantsb; and b, follow. We neglect the exponentially
small b, contribution and find

bz X2(€)\2+Ul)+b4(€)\4+vl)
3— )
U1

(17)

_0102(1=X) + eNp(v—voXp)
4 U102(1+X4)+ E)\4(02+01X4) '

(18

Retaining only terms that grow exponentially wixy one
therefore has

- voX\ [0} vy (vi—va)l—vx|[1
po(x)=exr<7) ( 1) + U—zexr{ ———lo
(19
in the limiting casey—0, and
R vx| (1
po(x):exp( ?) 1) (20

in the limit y—oo.

B. Relaxation eigenvector

The eigenvectoﬁr associated to the least negative eigen-

solve but explicit expressions are lengthy and not very inyajye of L, which determines the relaxation rate domi-
structive. Instead Fig. 2 collects the behavior of eigenvectorgates the dynamics of an initial nonequilibrium distribution

and eigenvalues as the fluctuation rgtearies fromy=0 to
y—oo. Two eigenvaluea ; and\ , diverge for largey while
only \, saturates, thus, interpolating betweagyYe and the
average slope/e. Accordingly, we havex;=x,=0 for y
=0 andxy,X,,X4—1 in the limit y—oo,

Now, inserting the expansion

4
ﬁo<x):j§1 (X)W, (13

into Eq. (6) immediately leads to
aj(x)=b; exp(Ajx), j=1,..,4 (14

with constantd; . Without loss of generality we set=1 in
what follows. The reflecting boundary condition(l)=0 is
solved by setting the integral from 0 toof p;—p, equal to

in Eq. (2) for long times. For a high static barrier with slope

v one simply finds fromSp,=—kp,~0 the function p,
~exppx/e)—1. The rate is calculated by integrating the
Smoluchowski equation from 0 tq

[odxSp,  p/(0) o2
T fIOprr :efl()dxpr%?e)(;{_?)- @)

As already mentioned above for fluctuating barriers of the
type (5) an exact diagonalization df is in principle possible
even though rather lengthy. Here, however, we want to pro-
ceed in the spirit of the smad expansion to arrive at trans-
parent expressions. For this purpose we consider the
“small” +yrange and the “moderate to largey range sepa-

rately. In the first case the operatbrcan be diagonalized
approximately forany potential (for details sed9]) taking

zero[see(4)]. Retaining only those terms that may becomeinto account only a basis of equilibrium and relaxation eigen-

exponentially large, we have

|
0= [ ax{ps0)-pat]
0

Xo— 1+xq
= exp(\,l)+ exp(\4l)b; (15
A, Ay
so that
A(1—X
b= o (=) (16)

T A(1+X%g)

turns out to be exponentially small. The conditich(0)
=0 is equivalent tw;p; + ep; =0 from which the remaining

functions of the static potentialg, , with relaxation rates
ki . The relevant least negative eigenvalue is

(ky—kp)?
2
Y +—4

ky+K w2

— 2 _

(22

As expectedk(0)=k; while for y>(k,—k;) the rate satu-
rates ak(y) = (k;+k,)/2~k,/2 in the so-called resonant ac-
tivation region. This result is valid as long @sis much
smaller than the second negative eigenvalu&pfvhich is
of orderv3/e.

To determine the relaxation rate for larger valuegefe
start by integratind.p, = — kp, from 0 tol; with the notation

pr=(¢1.%,) we get[see(21)]
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¢/(o)+¢/(o) L] L] L] 1 1
k= e 2 . (23)
TodX $1(x)+ b2(x)] Al
Next, an approximate solution foy>k;,k, is derived
by setting k~0 and solving Lp,=0. Consequently, >
f'0(¢1—¢2)w0, see Eq.4). This then looks just like the g
problem we already solved in the preceding section, with a5, | i
different boundary condition at=0. ﬁr is expanded accord-
ing to Eq.(13) again withb,=1 andb, as specified in Eq.
(16). Up to exponentially small terms the conditign(0) a)
=0 leads to
5 1 1 1 L L
b _ 1+X2X4 _1_X2 24 -6 -3 O O 3 6
3T w0 P T, 24 In(y/e) In(y/e)
Hence, FIG. 3. Relaxation rate for the piecewise linear potential as a
function of the barrier fluctuation rate. The solid line shows the
) , (1—%4)(1—X5) approximate formulag2?2) in (a) and(27) in (b). The dashed line is
$1(0) + ¢5(0)~No(1+Xz) + Ny T, (25 the exact result. Parameters arel, v,/e=9, andv,/e=6.
and gime, see Fig. @). With further increasing fluctuation rate
Eqg. (27) gives an again decreasing relaxation rate to arrive
' finally at Eq.(29), see Fig. 8). To compare our approxima-
[ axt gm0+ 4001 o : |
0 tions with exact results we calculated along the lines de-
scribed in Sec. Ill A exactly. The appropriate boundary
_ (It xg)expA,l) N (1+x1)exp(Nql) conditions first provide the coefficients in the eigen-
N ! N1 vector expansion and then a nonlinear equation for the rate.
As can be seen in Fig. 3 deviations mainly occur for moder-
~exp(Al) (14x3)(1+Xp) +(1—X1)(1—X5) ate y values where effects of expQ,l) terms are still
2 No(1+Xq) ' present. In particular, while the upper limit of EQR2) is
(26) k= (k;{+ky)/2 the lower limit of Eq.(27) is k=k,/2. Any-

This way we gain from Eq(23)

6)\2
k=~ TGXK—AZU

><[)\2(1"‘Xz)(]-‘H(A)"‘)\4(:I-_Xz)(l_X4)](1"‘Xl)
(1+X1X2)(1+Xy4) )

(27)

For smally (but still y>k,) we find

E)\Z U2 U2| _ k2
k~7exp(—)\zl)~zexr<—T —?, (28)

the rate for resonant activation. Fer—o we find

E)\Z

5 exp(—A,l)

v? vl
k%{ ZXZW?GX —:, (29)

the rate in the average potential. The region of resonant ac-

tivation where both expressiorig2) and(27) match is very
broad and extends from of orderk, to y of ordervéle.

To illustrate our results we show the relaxation rate as a

way, the combination of these two formulas gives an excel-
lent approximation also for moderate barrier heights and the
accuracy improves with decreasing and increasingV,
—-Vs.

IV. SQUARE BARRIER POTENTIAL

The starting point for calculating eigenfunctions to the

Smoluchowski operatdk in the smalle limit is Eq. (8). As

seen this equation describes relevant correlations between
the stochastic processes of barrier crossings and barrier fluc-
tuations. The general scheme illustrated for a simple model
potential in the preceding section can now be applied to
more realistic potentials. However, this eigenvector-
eigenvalue equation becomes unusable for singular poten-
tials. Hence, we derive here the exact solution for a piece-
wise constant potential in a somewhat different way. The
symmetric bistable potentials with square barriers are given
by (cf. Fig. 4

01
Vi, . i=12. (30)
01

function of the barrier fluctuation rate in Fig. 3. As param-

eters we chosé=1 and barrier heights,/e=9 anduv,/e

=6 to test the smalk approximation even for realistic pa-

rameters. According to Eq22) the rate grows fromy=0

A. Equilibrium eigenvector

For the solution ofl py=0 with po(X) = po(—x) we im-

with increasingy to reach the broad resonant activation re—poseﬁ(’)(O):O andﬁ()(il)=0. Furthermore, we are looking
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While the limit y=0 leads tog;(x e |)=expV;/e)(xell)
=consti=1,2 the casey—x is more interesting. IfV;/e

>1 one has fofx—a|>1/¢ in range | simplypo=(1,1) and
in Il po=7.(1,1). Inside a region around=a with width

V. 1 of order 2£ the eigenfunction becomes nonconstant,
- _[1+ 7 exp(—58)
V2 R po(X)= 1—75_ exp(—8¢)) (37)
in range | withé=x—a and
- 1 F{ Vil [1+exp 55))
T X)=—exp — —
-l -a o a l T Po(X) 2e e |\ 1—exp(6é)
: : ; 1 V,\ [ 1—exp(5€)
FIG. 4. Piecewise constant potentials. - _ 2
*3 eXF’( ( 1+ exp( 5¢) (38)

for symmetric solutions witbj(a™)=pg(a”) wherea™ de-
notes the upper ana~ the lower limit toa. in range II.

Due to symmetry we again need 0n|y to consider the In contrast to the pieceWise linear case, here the Irynlt
range Gsx<I which is separated in rangesd<x<I, and — does not lead to the eigenfunction for the average po-
I, 0<x<a. The general solution in | is straightforward,  tential butinstead to the average of the eigenfunctions for the
static potentials. This shows that there are no correlations
between thermal diffusion over square barriers and barrier
fluctuations.

po=(ax-+ay)| 1| +[as sinh(¢x)+ay costiéx)]|

(31
with £=+/2vy/e. In Il the general solution looks like E¢B1) B. Relaxation elger-nvector o _
with coefficientsb; ,j = 4Wherep0(0) 0 requiresb, We have to look for an antisymmetric eigenfunction
=b;=0. We also seaz— 1 without loss of generality. Then p;(X)=—p;(—X), i.e.,p,(0)=0. As a warmup let us briefly
we havesix conditions—four ai=a, two atx=|—andfive = address a static barrier with heigiife>1. Fora=1/2 the

coefficients to satisfy them. Magically—the magic of the expressions simplify considerably and one derives for the
equilibrium solution, see after Eq¢4) where adjustingone  eigenfunction in | a<x=l), Pr—CO$K(|—X)]; in 1l (0=<x
parameter satisfiesvo conditions—it all works out. After <a), p,=ex{ —V/(2€)]sin(xX) with x*=K/e; the rate fol-

tedious but simple algebra one obtains withift x=<l| lows as
- [1=f(&x)cosh{éx)/costi£a) e Vv 2 4e v
Po¥) =1 1 4 £(£,x)cost{éx)/cost£a) | (32) k=jz arctanexp — 5] | ~zexg — ). (39

with the function For fluctuating barriers the general solution in | is ob-

[1—tanh(&l)tanh(éx)]7- tained as

f&x)= 1—tanh(él)coth(éa) — [ 1—tanh &l)tank(£a) ] 1
(33 pr=[ay Sin(xx) +a, cogxx)] 1)
and the abbreviation
1 v, v, +[az sif(AX) +a,4 COYAX)] 1) (40
== |exp - —|texg - — (39
with A?= k?—2y/e. For\2<0 we use the analytic continu-
For O=x<a follows ation of trigonometric to hyperbolic functions. Correspond-
ingly, the solution in Il has constantg,j=1,...,4where the
50 =[1—f(£.a)]ex Vi (g+(§,x) node atx=0 requiresb,=b,=0. The contlnwty conditions
Po ' € )\9-(&X) atx=a and the reflecting boundary conditionsxat| give

rise to six homogeneous linear equations for the six remain-
(35) ing integration constants, with a nontrivial solution only if

the determinant of the coefficients vanishes, thus fixing the

eigenvaluek. One obtains the transcendent equation

ARG
+[1+f(§,a>]exp<‘f)(gﬁyg ’

with
cost{£x) tan(xa)tar] «(1 —a)]{ n17,— n+ cot(ha)co{A(I—a)]}

1
9=(697 52 coshiéa) (39 +cothajcof (1 -a)] - 7. =0, (4
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with 7;=exp(—=Vi/e),i=1,2 andn, = (n,+ 7,)/2. Again let 5 T T T T
us consider for simplicity the special cage:1/2. Then Eq.
(41) may be written as

tan(x1/2)2 tan(\1/2)2— 5, tan(\1/2)2

sin(«1/2)?
T SinNI2)?

+ 711,=0. (42)

In(k/e)

For y=0 Eg. (42) exhibits two solutions, namely, the rates
k, andk, for the static barrier¥; andV,, Eq.(39), respec-
tively. For y<2¢/1? an expansion of the trigopnometric func-
tions applies leading us to EQ2). In the opposite limity
>2¢l1? we have[since tanhj|l/2)~1] the result

de ki+k
k=13 arctan ., T )t (43) In(v/e)

FIG. 5. Relaxation rate for the piecewise constant potential as a

Hence for ally>k, the resonant activation rate applies. function of the barrier fluctuation rate. The solid line represents the

Finally, for completeness, the eigenvector: fp=0 we  exact result from Eq42) while the dashed line shows the approxi-
recover the eigenfunction for the static case in the potentiainate expressior22). Parameters aré=1, V;/e=9, andV,/e
V;. In the opposite limity—c< (and high barriefs outside =6.
the vicinity ofx=a (i.e., |[x—a|>1/£), one hagp,~(1,1) in
| and §r~(77+x/a)(1,1) in 11; inside, for|x—a|=<1/¢, we
obtain “connection formulas” like those derived for the
equilibrium in Eqgs.(37) and (38) that are, however, lengthy
and not very illuminating. More important is to notice that as

for the equilibrium vector fory— o the relaxation eigenvec- . . : ) .
djice mathematical picture of the underlying physics but also

tor does not tend to the eigenvector in the average potenti h that f Hiciontly | barrier fluctuati tes both
but instead to the average of the eigenvectors in the statit'OWS that Tor suificiently farge barner fiuctuation ratés bo

potentials. The boundary conditions are assured by slight d _otgnual surfa_lces get strongly entangled to build up an ef-
viations in the close vicinity aroung=a. ective potential for thermal barrier crossing. It turned out

For the same parameters as in the piecewise linear cast(l?at even for modera_te barrier_ height_s the I_east ne;g_ative el-
|=1, V,/e=9, andV,/e=6, we calculated in Fig. 5 the génvalue, the relaxation rate, is obtained with sufficient ac-
4 1 - — Y, .

relaxation rate from Eq(42). For comparison also the ap- curacy for the method to be applicable in more realistic sys-

proximate formula22) is shown. Once the rate reaches the M- For the piecewise constant potential the pptenual
resonant activation regime it begins to saturate at&). In matrix becomes singular so that eigenvectors and eigenval-

contrast to the mean exit time which is nearly independent o es were calculated.exactly. In contrast to.the pr.evious case
5 for small and largey [8], the rate becomes constant only in here are no correlations between stochastic barrier crossings

the latter range. and_ stochasti_c barrier quctua_ltions; as a consequence, an ef-
fective potential does not exist and the relaxation rate satu-
rates in the region of resonant activation.
So far investigations for fluctuating barrier systems have
In this paper we studied the Fokker-Planck equation forbeen focused on the Smoluchowski limit. The simple models
two simple versions of the fluctuating barrier problem,analyzed here, however, can be used to elucidate also “ki-
namely, dichotomous barrier fluctuations for piecewise lineanetic” effects of finite damping.
and piecewise constant potentials. Due to the properties of
the c_orresp_onding Smoluqhov_vski operator even the math- ACKNOWLEDGMENTS
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