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Eigenvector-eigenvalue rate calculations for the fluctuating barrier problem: Two examples
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By means of the corresponding Fokker-Planck equation two simple systems with fluctuating barriers are
studied: the piecewise linear and the piecewise constant model. In the Smoluchowski limit and for dichoto-
mous barrier fluctuations we derive explicit expressions for equilibrium and relaxation eigenvectors and de-
termine the least negative eigenvalue, the relaxation rate, for all values of the barrier fluctuation rate. In
particular, the accuracy of an approximate method for solving the eigenvector-eigenvalue problem is demon-
strated.@S1063-651X~98!08711-X#

PACS number~s!: 05.40.1j, 02.50.2r, 82.20.Mj
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I. INTRODUCTION

Escape over a high potential barrier by thermal activat
can be found almost everywhere in physics, chemistry,
biology @1#. Particles starting in a well to one side of th
barrier stochastically jump over it to reach a well on t
other side; at long times the initial nonequilibrium state d
cays with a constant rate, the so-called relaxation rate, to
up in thermal equilibrium. This dynamics is governed by
Fokker-Planck equation which becomes particularly sim
in the overdamped Smoluchowski limit@2#. Then, the eigen-
vector to the Smoluchowski operator with vanishing eige
value, the equilibrium state, can be given explicitly; also
relaxation eigenvector with its least negative eigenvalue,
relaxation rate, is found immediately.

In recent years thermal escape over fluctuating barr
has attracted extensive attention@3,4#, especially since the
discovery of the ‘‘resonant activation’’ phenomenon in 19
@5#. In many complex systems an additional stochastic p
cess, not in thermal equilibrium, controls thermal diffusi
and, thus, acts like a ‘‘gate’’ for, e.g., a reaction to occur@6#.
In the Smoluchowski limit the mean exit time was calculat
analytically for simple models and dichotomous barrier flu
tuations@7,8# and numerically for more realistic potentia
and continuous fluctuations@4#. However, the conventiona
Fokker-Planck approach had only been studied in cer
limits @9#. The nice simplifications that make the theory
self-adjoint operators applicable to the Smoluchowski ope
tor for static barriers are no longer possible in the fluctuat
barrier case. Hence, even the existence of equilibrium
relaxation eigenfunctions is not obvious and a consistent
proximate method for calculating the relaxation rate need
be found.

Recently a rigorous proof was given for the case of
chotomous barrier fluctuations that guarantees at least
existence of these relevant eigenfunctions@10#. Foundations
for a practical approach to gain explicit solutions, especia
for the relaxation rate, for all values of the barrier fluctuati
rate were laid in a subsequent work@11#. Here, we combine
results from both studies to illustrate the approxim
eigenvector-eigenvalue calculation for two simple mode
the piecewise linear and the piecewise constant poten
These two potentials can be seen as limiting cases of gen
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bistable potentials: double wells with either very lar
~piecewise linear! or almost vanishing~piecewise constant!
curvatures at the barrier top and at the well minima. They
only allow for exact results as explicitly shown for the me
exit time in @7,8# but also lead to transparent expressions t
demonstrate nicely the general strategy of the approximat

The article begins with a brief review of the Fokke
Planck approach for dichotomous barrier fluctuations in
Smoluchowski limit~Sec. II!. In the following two sections
first the piecewise linear~Sec. III!, then the piecewise con
stant case~Sec. IV! are analyzed. Analytical results are illus
trated by numerical examples. Finally, in Sec. V a summary
is given.

II. FOKKER-PLANCK OPERATOR

In a static potentialV(x) thermal diffusion of a particle in
the overdamped~Smoluchowski! limit is determined by

] tr5]x@V8~x!1e]x#r[Ŝr, ~1!

whereV8 stands fordV(x)/dx, e5kBT denotes the therma
energy, andr(x,t) is the position probability of the particle
at time t. The mathematics to study this dynamics is rath
simple: one transforms the Smoluchowski operatorŜ to a
self-adjoint second-order differential operator by employi
an appropriate multiplication operator. Accordingly, the e
istence of a complete set of eigenfunctions with correspo
ing real eigenvalues is assured. In particular, the equilibri
eigenfunctionŜr050 is easily found and the least negativ
eigenvalue2k gives the relaxation rate.

In the case of dichotomous barrier fluctuations betwe
potential surfacesV1 andV2 with flipping rateg two densi-
ties r1(x,t) andr2(x,t) are needed:r i(x,t), i 51,2 are the
densities to find the particle at timet at positionx and the
potential in stateVi . The analog to Eq.~1! reads

] tS r1

r2
D5L̂~g!S r1

r2
D , ~2!

with the matrix Smoluchowski operator
6968 © 1998 The American Physical Society
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L̂~g!5S Ŝ12g g

g Ŝ22g
D . ~3!

However, no simple trick is known to transformL̂ to a self-
adjoint operator. Consequently, even the existence of e
librium and relaxation eigenfunctions is not obvious. O
way is then to diagonalizeL̂ exactly which, however, is ex
plicitly possible only for a few model potentials~see Sec.
IV !. The other way is to prove the existence at least of eq
librium and relaxation eigenfunctions for certain classes
potentials without resorting to the well-developed theory
self-adjoint operators. This is what was done in@10#.

Let us sketch the idea for the equilibriumrW 05(r1 ,r2) in
symmetric potentialsV1,2(x) restricted to the range
@2R,R# by reflecting boundary conditionsVi8r i1er i850 at
x56R. We write r i(x)5ci(x)exp@2Vi(x)/e# and impose
ci8(0)50, ci(x).0 for all x, andci8(6R)50,i 51,2. Inte-

grating L̂rW 050 one gets

c18~x!exp@2V1~x!/e#5~g/e!E
0

x

dx8@r1~x8!2r2~x8!#,

~4!

c28~x!exp@2V2~x!/e#52~g/e!E
0

x

dx8@r1~x8!2r2~x8!#.

If c1(0)/c2(0) is sufficiently large, thenr1.r2 for all x and
c18(R).0, c28(R),0. If c1(0)/c2(0) is sufficiently small,
thenr1,r2 for all x andc18(R),0, c28(R).0. By continu-
ity, there is a ratioc1(0)/c2(0) ‘‘just right’’ that the integral
from 0 to R of r12r2 vanishes, soc18(R)5c28(R)50 and
we have the equilibrium solution. Similar arguments sh
that a relaxation eigenfunctionL̂rW r52krW r , with rW r(x)5

2rW r(2x), exists.
In general, much more work is necessary to gain expl

expressions for the quantities of interest due to the entan
ment of the potential surfaces in Eq.~2!. From a physical
point of view the limit of small thermal noise, i.e., hig
barriers, with the characteristic separation of time scale
relevant for rate calculations. Then, equilibrium and rela
ation eigenfunctions are dominated by ‘‘Arrhenius-like’’ e
ponentials@11# which allows for an asymptotic solution ine.
In the following we illustrate how this latter fact togeth
with the above results from the existence proof can be c
bined to give a powerful method for practical calculations

III. PIECEWISE LINEAR POTENTIAL

We study diffusion in fluctuating piecewise linear pote
tials

Vi~x!5H v i~ l 2x!, 0<x< l

v i~ l 1x!, 2 l<x<0
~5!

with i 51,2 andv1.v2.0 ~cf. Fig. 1!. While in principle
for this model the Smoluchowski operator~3! can be diago-
nalized exactly, we concentrate here onv i l /e@1,i 51,2
~high barriers! to show the strategy of the approximation.
i-

i-
f
f

it
le-

is
-

-

A. Equilibrium eigenvector

Due to symmetry,rW 0(x)5rW 0(2x), it is sufficient to con-
siderx.0 only. One rewritesL̂rW 050 as a set of first-orde
differential equations@11#

]xS rW 0

rW 08
D 5S 0 I

B AD S rW 0

rW 08
D , ~6!

whereI denotes the two-dimensional identity and

A5S v1 /e 0

0 v2 /e D , B5
g

e S 1 21

21 1 D . ~7!

By determining eigenvectors and eigenvalues of the four
four matrix in Eq.~6! one generates a basis set for expand
rW 0 . The proper expansion coefficients are then fixed by
voking the boundary conditions.

The eigenvectors are obtained assW j5(wW j ,l jwW j ), j
51,...,4 where eigenvaluesl j and componentswW j follow
from

BwW 1lAwW 5l2wW . ~8!

In particular, one finds one vanishing eigenvaluel350 cor-
responding to the equilibrium of theg process. The remain
ing three real eigenvalues are determined by the cubic e
tion

l322l2
v̄
e

1l
v1v222eg

e2 1
2g v̄
e2 50, ~9!

with the average slope

v̄5
v11v2

2
. ~10!

For the components one has

wW 15S 1
2x1

D , wW 25S x2

1 D , wW 35S 1
1D , wW 45S 1

2x4
D ,

~11!

where

FIG. 1. Piecewise linear potentials.
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x15
el12v1

el12v2
, x25

el22v2

v12el2
, x45

el42v1

el42v2
. ~12!

Since A and B are constant matrices Eq.~9! is easy to
solve but explicit expressions are lengthy and not very
structive. Instead Fig. 2 collects the behavior of eigenvec
and eigenvalues as the fluctuation rateg varies fromg50 to
g→`. Two eigenvaluesl1 andl4 diverge for largeg while
only l2 saturates, thus, interpolating betweenv2 /e and the
average slopev̄/e. Accordingly, we havex15x250 for g
50 andx1 ,x2 ,x4→1 in the limit g→`.

Now, inserting the expansion

rW 0~x!5(
j 51

4

aj~x!wW j ~13!

into Eq. ~6! immediately leads to

aj~x!5bj exp~l j x!, j 51,...,4 ~14!

with constantsbj . Without loss of generality we setb251 in
what follows. The reflecting boundary conditionci8( l )50 is
solved by setting the integral from 0 tol of r12r2 equal to
zero @see~4!#. Retaining only those terms that may becom
exponentially large, we have

05E
0

l

dx@r1~x!2r2~x!#

5
x221

l2
exp~l2l !1

11x1

l1
exp~l1l !b1 ~15!

so that

b15
l1~12x2!

l2~11x1!
exp@2~l12l2!l # ~16!

turns out to be exponentially small. The conditionci8(0)
50 is equivalent tov ir i1er i850 from which the remaining

FIG. 2. Eigenvalues of Eq.~8! as functions ofg/e. The compo-
nents of the corresponding eigenvectors are also specified fg
50 andg/e→`. See text for details.
-
rs

constantsb3 and b4 follow. We neglect the exponentially
small b1 contribution and find

b352
x2~el21v1!1b4~el41v1!

v1
, ~17!

b45
v1v2~12x2!1el2~v12v2x2!

v1v2~11x4!1el4~v21v1x4!
. ~18!

Retaining only terms that grow exponentially withx, one
therefore has

rW 0~x!5expS v2x

e D S 0
1D1

v1

v2
expF2

~v12v2!l 2v1x

e G S 1
0D
~19!

in the limiting caseg→0, and

rW 0~x!5expS v̄x

e
D S 1

1D ~20!

in the limit g→`.

B. Relaxation eigenvector

The eigenvectorrW r associated to the least negative eige
value of L̂, which determines the relaxation ratek, domi-
nates the dynamics of an initial nonequilibrium distributio
in Eq. ~2! for long times. For a high static barrier with slop

v one simply finds fromŜr r52kr r'0 the functionr r
'exp(vx/e)21. The rate is calculated by integrating th
Smoluchowski equation from 0 tol ,

k52
*0

l dxŜr r

*0
l dxr r

5e
r r8~0!

*0
l dxr r

'
v2

e
expS 2

v l

e D . ~21!

As already mentioned above for fluctuating barriers of
type ~5! an exact diagonalization ofL̂ is in principle possible
even though rather lengthy. Here, however, we want to p
ceed in the spirit of the smalle expansion to arrive at trans
parent expressions. For this purpose we consider
‘‘small’’ g range and the ‘‘moderate to large’’g range sepa-
rately. In the first case the operatorL̂ can be diagonalized
approximately forany potential ~for details see@9#! taking
into account only a basis of equilibrium and relaxation eige
functions of the static potentialsV1,2 with relaxation rates
k1,2. The relevant least negative eigenvalue is

k~g!5
k11k2

2
1g2Fg21

~k12k2!2

4 G1/2

. ~22!

As expectedk(0)5k1 while for g@(k22k1) the rate satu-
rates atk(g)5(k11k2)/2'k2/2 in the so-called resonant ac
tivation region. This result is valid as long asg is much
smaller than the second negative eigenvalue ofŜ2 which is
of orderv2

2/e.
To determine the relaxation rate for larger values ofg we

start by integratingL̂rW r52krW r from 0 to l ; with the notation
rW r5(f1 ,f2) we get@see~21!#



h
-

a

s
-

-

re

e
ive
-

ry
n-
ate.
er-

el-
the

he

een
fluc-
del
to

or-
ten-
ce-
he
ven

s a
he

PRE 58 6971EIGENVECTOR-EIGENVALUE RATE CALCULATIONS . . .
k5e
f18~0!1f28~0!

*0
l dx@f1~x!1f2~x!#

. ~23!

Next, an approximate solution forg@k1 ,k2 is derived
by setting k'0 and solving L̂rW r50. Consequently,
*0

l (f12f2)'0, see Eq.~4!. This then looks just like the
problem we already solved in the preceding section, wit
different boundary condition atx50. rW r is expanded accord
ing to Eq.~13! again withb251 andb1 as specified in Eq.
~16!. Up to exponentially small terms the conditionrW r(0)
50 leads to

b352
11x2x4

11x4
, b45

12x2

11x4
. ~24!

Hence,

f18~0!1f28~0!'l2~11x2!1l4

~12x4!~12x2!

11x4
~25!

and

E
0

l

dx@f1~x!1f2~x!#

'
~11x2!exp~l2l !

l2
1b1

~11x1!exp~l1l !

l1

'exp~l2l !
~11x1!~11x2!1~12x1!~12x2!

l2~11x1!
.

~26!

This way we gain from Eq.~23!

k'
el2

2
exp~2l2l !

3
@l2~11x2!~11x4!1l4~12x2!~12x4!#~11x1!

~11x1x2!~11x4!
.

~27!

For smallg ~but still g@k2) we find

k'
el2

2
exp~2l2l !'

v2

2e
expS 2

v2l

e D5
k2

2
, ~28!

the rate for resonant activation. Forg→` we find

k'Fel2

2
exp~2l2l !G2l2'

v̄2

e
expS 2

v̄ l

e
D , ~29!

the rate in the average potential. The region of resonant
tivation where both expressions~22! and ~27! match is very
broad and extends fromg of orderk2 to g of orderv2

2/e.
To illustrate our results we show the relaxation rate a

function of the barrier fluctuation rate in Fig. 3. As param
eters we chosel 51 and barrier heightsv1 /e59 andv2 /e
56 to test the smalle approximation even for realistic pa
rameters. According to Eq.~22! the rate grows fromg50
with increasingg to reach the broad resonant activation
a

c-

a

-

gime, see Fig. 3~a!. With further increasing fluctuation rat
Eq. ~27! gives an again decreasing relaxation rate to arr
finally at Eq.~29!, see Fig. 3~b!. To compare our approxima
tions with exact results we calculatedrW r along the lines de-
scribed in Sec. III A exactly. The appropriate bounda
conditions first provide the coefficients in the eige
vector expansion and then a nonlinear equation for the r
As can be seen in Fig. 3 deviations mainly occur for mod
ate g values where effects of exp(2l1l) terms are still
present. In particular, while the upper limit of Eq.~22! is
k5(k11k2)/2 the lower limit of Eq.~27! is k5k2/2. Any-
way, the combination of these two formulas gives an exc
lent approximation also for moderate barrier heights and
accuracy improves with decreasinge and increasingV1
2V2 .

IV. SQUARE BARRIER POTENTIAL

The starting point for calculating eigenfunctions to t
Smoluchowski operatorL̂ in the smalle limit is Eq. ~8!. As
seen this equation describes relevant correlations betw
the stochastic processes of barrier crossings and barrier
tuations. The general scheme illustrated for a simple mo
potential in the preceding section can now be applied
more realistic potentials. However, this eigenvect
eigenvalue equation becomes unusable for singular po
tials. Hence, we derive here the exact solution for a pie
wise constant potential in a somewhat different way. T
symmetric bistable potentials with square barriers are gi
by ~cf. Fig. 4!

Vi~x!5H 0, a<x< l

Vi , 2a<x<a

0, 2 l<x<2a

, i 51,2. ~30!

A. Equilibrium eigenvector

For the solution ofL̂rW 050 with rW 0(x)5rW 0(2x) we im-
poserW 08(0)50 andrW 08(6 l )50. Furthermore, we are looking

FIG. 3. Relaxation rate for the piecewise linear potential a
function of the barrier fluctuation rate. The solid line shows t
approximate formulas~22! in ~a! and~27! in ~b!. The dashed line is
the exact result. Parameters arel 51, v1 /e59, andv2 /e56.
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for symmetric solutions withrW 08(a
1)5rW 08(a

2) wherea1 de-
notes the upper anda2 the lower limit toa.

Due to symmetry we again need only to consider
range 0<x< l which is separated in ranges I,a,x< l , and
II, 0<x,a. The general solution in I is straightforward,

rW 05~a1x1a2!S 1
1D1@a3 sinh~jx!1a4 cosh~jx!#S 1

21D ,

~31!

with j5A2g/e. In II the general solution looks like Eq.~31!

with coefficientsbj , j 51,...,4 whererW 08(0)50 requiresb1

5b350. We also seta251 without loss of generality. Then
we havesix conditions—four atx5a, two atx5 l—andfive
coefficients to satisfy them. Magically—the magic of th
equilibrium solution, see after Eq.~4! where adjustingone
parameter satisfiestwo conditions—it all works out. After
tedious but simple algebra one obtains withina,x< l

rW 0~x!5S 12 f ~j,x!cosh~jx!/cosh~ja!

11 f ~j,x!cosh~jx!/cosh~ja! D , ~32!

with the function

f ~j,x!5
@12tanh~j l !tanh~jx!#h2

12tanh~j l !coth~ja!2h1@12tanh~j l !tanh~ja!#

~33!

and the abbreviation

h65
1

2 FexpS 2
V2

e D6expS 2
V1

e D G . ~34!

For 0<x,a follows

rW 0~x!5@12 f ~j,a!#expS 2
V1

e D S g1~j,x!

g2~j,x! D
1@11 f ~j,a!#expS 2

V2

e D S g2~j,x!

g1~j,x! D , ~35!

with

g6~j,x!5
1

2
6

cosh~jx!

2 cosh~ja!
. ~36!

FIG. 4. Piecewise constant potentials.
e

While the limit g50 leads tof i(xPI )5exp(Vi /e)fi(xPII )
5const,i51,2 the caseg→` is more interesting. IfVi /e
@1 one has forux2au@1/j in range I simplyrW 05(1,1) and
in II rW 05h1(1,1). Inside a region aroundx5a with width
of order 2/j the eigenfunction becomes nonconstant,

rW 0~x!5S 11h2 exp~2dj!

12h2 exp~2dj! D , ~37!

in range I withd5x2a and

rW 0~x!5
1

2
expS 2

V1

e D S 11exp~dj!

12exp~dj! D
1

1

2
expS 2

V2

e D S 12exp~dj!

11exp~dj! D ~38!

in range II.
In contrast to the piecewise linear case, here the limig

→` does not lead to the eigenfunction for the average
tential but instead to the average of the eigenfunctions for
static potentials. This shows that there are no correlati
between thermal diffusion over square barriers and bar
fluctuations.

B. Relaxation eigenvector

We have to look for an antisymmetric eigenfunctio
rW r(x)52rW r(2x), i.e.,rW r(0)50. As a warmup let us briefly
address a static barrier with heightV/e@1. For a5 l /2 the
expressions simplify considerably and one derives for
eigenfunction in I (a,x< l ), r r5cos@k(l2x)#; in II (0<x
,a), r r5exp@2V/(2e)#sin(kx) with k25k/e; the rate fol-
lows as

k5
4e

l 2 arctanFexpS 2
V

2e D G2

'
4e

l 2 expS 2
V

e D . ~39!

For fluctuating barriers the general solution in I is o
tained as

rW r5@a1 sin~kx!1a2 cos~kx!#S 1
1D

1@a3 sin~lx!1a4 cos~lx!#S 1
21D , ~40!

with l25k222g/e. For l2,0 we use the analytic continu
ation of trigonometric to hyperbolic functions. Correspon
ingly, the solution in II has constantsbj , j 51,...,4where the
node atx50 requiresb25b450. The continuity conditions
at x5a and the reflecting boundary conditions atx5 l give
rise to six homogeneous linear equations for the six rem
ing integration constants, with a nontrivial solution only
the determinant of the coefficients vanishes, thus fixing
eigenvaluek. One obtains the transcendent equation

tan~ka!tan@k~ l 2a!#$h1h22h1 cot~la!cot@l~ l 2a!#%

1cot~la!cot@l~ l 2a!#2h150, ~41!



s

-

ti

e
y
as
-
nt
ta
d

a

-
he

t o
in

fo
m
ea
s
at
ec
lie
or
an
ue

is
oef-
ate
ults
a
lso
th
ef-
ut
ei-

ac-
ys-
tial
val-
ase
ings
n ef-
atu-

ve
els
‘‘ki-

of
ed
a-

s a
the
i-

PRE 58 6973EIGENVECTOR-EIGENVALUE RATE CALCULATIONS . . .
with h i5exp(2Vi /e),i51,2 andh15(h11h2)/2. Again let
us consider for simplicity the special casea5 l /2. Then Eq.
~41! may be written as

tan~k l /2!2 tan~l l /2!22h1 tan~l l /2!2

3F11
sin~k l /2!2

sin~l l /2!2G1h1h250. ~42!

For g50 Eq. ~42! exhibits two solutions, namely, the rate
k1 andk2 for the static barriersV1 andV2 , Eq. ~39!, respec-
tively. For g!2e/ l 2 an expansion of the trigonometric func
tions applies leading us to Eq.~22!. In the opposite limitg
@2e/ l 2 we have@since tanh(ulul/2)'1# the result

k5
4e

l 2 arctan~Ah11h1h2!2'
k11k2

2
. ~43!

Hence for allg@k2 the resonant activation rate applies.
Finally, for completeness, the eigenvector: forg50 we

recover the eigenfunction for the static case in the poten
V1 . In the opposite limitg→` ~and high barriers!, outside
the vicinity of x5a ~i.e., ux2au@1/j), one hasrW r'(1,1) in
I and rW r'(h1x/a)(1,1) in II; inside, for ux2au&1/j, we
obtain ‘‘connection formulas’’ like those derived for th
equilibrium in Eqs.~37! and ~38! that are, however, length
and not very illuminating. More important is to notice that
for the equilibrium vector forg→` the relaxation eigenvec
tor does not tend to the eigenvector in the average pote
but instead to the average of the eigenvectors in the s
potentials. The boundary conditions are assured by slight
viations in the close vicinity aroundx5a.

For the same parameters as in the piecewise linear c
l 51, V1 /e59, and V2 /e56, we calculated in Fig. 5 the
relaxation rate from Eq.~42!. For comparison also the ap
proximate formula~22! is shown. Once the rate reaches t
resonant activation regime it begins to saturate at Eq.~43!. In
contrast to the mean exit time which is nearly independen
g for small and largeg @8#, the rate becomes constant only
the latter range.

V. SUMMARY

In this paper we studied the Fokker-Planck equation
two simple versions of the fluctuating barrier proble
namely, dichotomous barrier fluctuations for piecewise lin
and piecewise constant potentials. Due to the propertie
the corresponding Smoluchowski operator even the m
ematical existence of equilibrium and relaxation eigenv
tors is not obvious. For the piecewise linear case we app
an approximate method for solving the eigenvect
eigenvalue problem which becomes exact in the limit of v
ishing thermal noise. The idea is to determine eigenval
al

ial
tic
e-

se,

f

r
,
r
of
h-
-
d
-
-
s

and eigenvectors of the ‘‘potential matrix’’ and to use th
basis set for expanding the desired eigenfunction. The c
ficients in this expansion are then fixed by the appropri
boundary conditions. This way we combined general res
from previous work@10,11#. The procedure not only gives
nice mathematical picture of the underlying physics but a
shows that for sufficiently large barrier fluctuation rates bo
potential surfaces get strongly entangled to build up an
fective potential for thermal barrier crossing. It turned o
that even for moderate barrier heights the least negative
genvalue, the relaxation rate, is obtained with sufficient
curacy for the method to be applicable in more realistic s
tems. For the piecewise constant potential the poten
matrix becomes singular so that eigenvectors and eigen
ues were calculated exactly. In contrast to the previous c
there are no correlations between stochastic barrier cross
and stochastic barrier fluctuations; as a consequence, a
fective potential does not exist and the relaxation rate s
rates in the region of resonant activation.

So far investigations for fluctuating barrier systems ha
been focused on the Smoluchowski limit. The simple mod
analyzed here, however, can be used to elucidate also
netic’’ effects of finite damping.
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FIG. 5. Relaxation rate for the piecewise constant potential a
function of the barrier fluctuation rate. The solid line represents
exact result from Eq.~42! while the dashed line shows the approx
mate expression~22!. Parameters arel 51, V1 /e59, and V2 /e
56.
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